-
数据团队来管理数据的年代是时候结束了
所属栏目:[大数据] 日期:2022-06-10 热度:155
最初使用的是数据仓库,然后是数据湖。如果大肆宣传是可信的话,那么现在是数据网格的时代了。 所有这些都依次被视为开启金融数据真正价值的灵丹妙药。那么,为什么数据的真正价值之前没有实现呢? 中心化的数据团队常常会在公司结构中造成瓶颈,阻碍整个企[详细]
-
成功进行数据转移的策略
所属栏目:[大数据] 日期:2022-06-10 热度:72
数据迁移是一个复杂且通常成本高昂的过程。企业将需要正确的方法来准确无误地迁移数据,其中包括深思熟虑的策略和适当的工具。 为什么需要数据迁移? 企业选择升级其存储系统并随之迁移数据有几个原因,最终帮助他们获得竞争优势。数据库迁移可帮助企业克服[详细]
-
实施合理的数据收集战略的重要性
所属栏目:[大数据] 日期:2022-06-10 热度:51
数据已经成为企业最宝贵的资产之一,而一些企业仍然否认它的重要性,但他们对接受它的犹豫正在消退。一项民意调查发现,36%的企业认为大数据对他们的成功至关重要。 然而,许多企业仍在努力制定持久的数据战略。最主要的一个问题是他们没有可靠的数据收集[详细]
-
怎样避免淹没在云原生可观测性数据中
所属栏目:[大数据] 日期:2022-06-09 热度:114
传统的应用程序性能监视(APM)在新的云原生堆栈中并不总是能发挥作用,两者在规模和数据量方面存在根本差异。此外,当一切都在容器中运行时,必须围绕数据的临时性设计和优化监视。 了解云原生性能可以更好地为站点可靠性工程师(SRE)和平台工程师提供实时洞[详细]
-
使用取代数据的五个隐性成本
所属栏目:[大数据] 日期:2022-06-09 热度:134
如今,替代数据源已嵌入到各个行业的企业业务流程中。根据Lowenstein Sandler 律师事务所2022 年的一项调查,92% 的投资机构(从对冲基金、私募股权到风险投资)都在以中等或很大的程度使用替代数据来为决策提供依据。受访者还预计,他们在 2022 年对替代数[详细]
-
2022年应关注的七大数据管理走势
所属栏目:[大数据] 日期:2022-06-09 热度:131
调研机构IDC公司分析师表示,数据分析市场正在蓬勃发展,目前全球每年的支出已经超过2000亿美元。 同样,全球数据分析就业市场规模也呈现上升趋势。根据美国劳工统计局预测,到2030年,数据科学职位将增长30%以上。此外,根据Gartner公司的估计,几乎所有[详细]
-
数据科学中数据收集的终极攻略
所属栏目:[大数据] 日期:2022-06-09 热度:192
在当今世界,数据对任何一家企业的成功都起着关键作用。企业的目标受众、竞争对手产生的数据、工作领域的信息以及企业自己收集的数据可能会帮助找到更多客户、分析业务决策、重新优化业务模型或进入到其他市[详细]
-
8个顶级预测分析工具对比
所属栏目:[大数据] 日期:2022-06-09 热度:190
希望知道未来会带来什么吗?预测分析工具将会提供答案,这些答案是对的吗?有时是对的。但是,如果预测可以帮助企业更好地规划、更明智地支出,并为客户提供更具预见性的服务,那么这就足够了。 什么是预测分析工具? 预测分析工具融合了人工智能和业务报告。[详细]
-
大数据技术的成功案例及趋向
所属栏目:[大数据] 日期:2022-06-09 热度:99
通过大数据技术和工具进行数据管理已经成为企业乃至国家层面的一个热门话题。如今,主要是大型企业在使用大数据技术(约占市场的60%)。然而,使用这种技术的中小企业数量每年都在增长。特别是在人工智能技术发展的今天,我们能够更加充分利用数据的价值。[详细]
-
为什么不可忽视建筑物中的数据分析?
所属栏目:[大数据] 日期:2022-06-09 热度:121
想象一栋建筑,其中创新的管理系统不断提供有关内部情况的简单而有意义的信息。这些数据可用于提高效率、开发更智能的设备维护协议、创建更健康的建筑环境,并最终让使用者更快乐。 现在,考虑一个没有用于监控其系统的分析的建筑物。设备出现故障,存在空[详细]
-
真正指挥大规模战争的其实为大数据和人工智能?
所属栏目:[大数据] 日期:2022-05-21 热度:175
大数据和人工智能到底有多强?大部分人仍然没有直观体会,但实际上已经渗透进当今地球和人类活动的方方面面。也正在深刻地改变世界的固有形态。那些过去的超级强国,在这方面仍然遥遥领先,而那些没有跟上潮流的90%以上的国家,其实早就彻底躺平;最主要的是[详细]
-
数据分析师七大实力 梳理标签体系
所属栏目:[大数据] 日期:2022-05-21 热度:79
大家好,我是爱学习的小xiong熊妹。 这次分享一个更高级能力:构造标签体系。在提升能力的顺序上,当然是先会打一个标签,再会搞整个体系了。 一、什么是标签体系? 围绕一个业务场景,实现业务闭环操作的若干个标签组合,称为标签体系。之所以需要标签体系[详细]
-
大数据分析是啥?
所属栏目:[大数据] 日期:2022-05-21 热度:141
大数据分析:是指对规模巨大的数据进行分析,大数据可以概括为:数据量大,速度快,类型多,价值、真实性。 大数据可以概括为5个V, 数据量大、速度快、类型多、价值、真实性。 1.可视化分析 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具[详细]
-
大数据研究引用挑战预测增加
所属栏目:[大数据] 日期:2022-05-21 热度:80
尽管大数据行业有大量的软件平台和产品、开发人员和数据专业人士,以及许多热心的爱好者,但对于专业数据工作者和管理人员来说,在企业中实施数据战略仍然存在一些担忧和障碍。 数据分析平台提供商Unsupervised公司日前发表了一项名为2022年大数据恐惧和预[详细]
-
专家视点 数据无处不在的云原生途径
所属栏目:[大数据] 日期:2022-05-21 热度:133
使用 Kubernetes 进行架构是必不可少的核心部分,它使数据分析异常灵活,可在业务需要的任何地方运行,并以高并发、高性能、效率和可用性大规模运行。 从金融服务和保险到制造和医疗保健等垂直领域的无数企业发现,他们需要公共和私有云、混合和边缘部署来[详细]
-
TiDB 在携程 实时标签处理平台优化践行
所属栏目:[大数据] 日期:2022-05-21 热度:112
携程是全球领先的一站式旅行平台,旗下拥有携程旅行网、去哪儿网、Skyscanner 等品牌。携程旅行网向超过 9000 万会员提供酒店预订、酒店点评及特价酒店查询、机票预订、飞机票查询、时刻表、票价查询、航班查询等服务。 在十亿级别数据量下,携程借助 TiDB[详细]
-
生活中无处不在的数据解析
所属栏目:[大数据] 日期:2022-05-21 热度:126
关于数据分析的问题 很多时候,会被一些刚刚入门或者入门两三年的同学问:数据分析就是提数据吗?为什么我感觉我像个工具人一样天天写SQL做报表呢?! 每到这个时候,我就想起来了我入行的那个夏天,每天乐此不疲的跑着SQL。好像自己那会儿没有思考过这个[详细]
-
基于数据解析给出运营建议 咋整?
所属栏目:[大数据] 日期:2022-05-21 热度:149
有同学问:如何基于数据分析提出运营建议,今天我们拿个简单的题目来举例。这个题目陈老师之前讲过,有印象的同学应该还记得。再举一次,是因为每到招聘季都有人把它搬出来,而且有关它的大部分讲解,都是错的。 已知,下图是某个电商一周销售金额走势(具[详细]
-
大数据技术的用处和它的五大核心原理
所属栏目:[大数据] 日期:2022-05-21 热度:71
大数据的用途 大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未被重视。大数据工程是指大数据的规划建设运营管理的系统工程;大数据科学关注大数据网络发展和运营过程[详细]
-
2022年三个主要的数据分析趋向
所属栏目:[大数据] 日期:2022-05-21 热度:76
数据分析是一个不断发展的领域。2020年初发生新冠疫情成为主要的破坏因素,企业需要大力投资数据分析以支持其数字化转型。 在新冠疫情蔓延初期,很多企业减少开支并专注于其他紧迫的优先事项(例如支持员工远程工作),这似乎可能会阻碍数据和分析的进步。但[详细]
-
紧跟业务发展速度的数据治理是啥样的
所属栏目:[大数据] 日期:2022-05-21 热度:64
如今企业要获取数据,物联网(Internet of things,IoT)设备、可穿戴设备、软件即服务(Software as a Service,SaaS)应用程序和社交媒体都是来源。对这些数据的组合和深入分析可以为企业提供新的洞察力,并助力企业发现潜在商机。通过将这些能力在企业内扩[详细]
-
何为经营分析?为什么大厂这么重视它
所属栏目:[大数据] 日期:2022-05-21 热度:177
上周一连有两个大厂(短视频、游戏)的朋友来聊经营分析,着实让我好奇了一下。经营分析这个东西,以往都是传统国企做得多,咋连他们也开始纠结了。 聊完才发现:地主家也没余粮呀!toC互联网的流量见顶,成本增高,让原本花钱如泼水的大厂也得重视效益考核,[详细]
-
视频时代的大数据 问题 挑战与处理方案
所属栏目:[大数据] 日期:2022-05-21 热度:75
视频时代的大数据 问题 挑战与处理方案: 一、介绍 人们所观察的世界无时无刻不在改变,造就了视频相比于文本等类型的数据更具表现力,包含更加丰富的信息。如今,能够产生视频的数据源及应用场景愈发多样,视频数据的规模不断增长,视频大数据成为支撑诸[详细]
-
数据分析的12个神话被揭露
所属栏目:[大数据] 日期:2022-05-21 热度:81
从数据问题到人员需求再到技术组合,数据分析的误解比比皆是。下面我们来看看如何利用数据科学来实现真正的业务成果。 在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会[详细]
-
为何企业必须采用大数据战略?
所属栏目:[大数据] 日期:2022-05-21 热度:150
智能企业利用各种形式的海量数据来更好地了解消费者、管理库存、优化物流和运营程序,并做出合理的业务选择。成功的公司也认识到处理他们产生的大量大数据的重要性,以及发现可靠的方法来从中提取洞察力。制定大数据战略以正确有效地存储、组织、处理和利[详细]
